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Abstract During the last few decades, the global agricultural production has risen and technology
enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation,
and climate change threaten the global food security. An understanding of the variables that caused past
changes in crop yields can help improve future crop prediction models. In this article, we present a com-
prehensive global analysis of the changes in the crop yields and how they relate to different large-scale
and regional climate variables, climate change variables and technology in a unified framework. A new
multilevel model for yield prediction at the country level is developed and demonstrated. The structural
relationships between average yield and climate attributes as well as trends are estimated simultaneously.
All countries are modeled in a single multilevel model with partial pooling to automatically group and
reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI),
geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based
time series of GDP per capita as an approximation of technology measurement are used as predictors to
estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these
variables can explain the variability in historical crop yields for most of the countries and the model per-
forms well under out-of-sample verifications. While some countries were not generally affected by climatic
factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many
countries.

1. Introduction

Global food security is one of the most critical issues of the 21st century and is inseparable from human
well-being. Technological advances, improved variety of seeds and fertilizers, and better farming practices
are contributing to the enhancement of the crop production globally. At the same time, vagaries of climate,
especially the frequency of extremes and changing seasons, and regional shortages of water and energy
are inducing yield depressions and undermining the food security. Furthermore, climate extremes have
been on the uptrend since the last century (Asadieh et al., 2016), and global climate change projections
indicate that the frequency and severity of extremes may continue to increase, hence posing a challenge
for the future (Parry, 2007). A burgeoning population, economic crises, political issues like sanctions, civil
unrest, and social strife add to the uncertainties and make food security more complicated to address. For
instance, the 1994 Rwandan famine brought about by the loss of 60% of the country’s harvest was primarily
due to the civil war (Sperling, 1997). Flooding and lack of trade triggered famine conditions in North Korea
during the 1990s (Haggard & Noland, 2009). Recently, 17 million people in Yemen are under emergency
food situation due to regional conflicts (Sharp, 2017). A clear understanding of the impacts of technology,
climate variability, and climate change on global crop yields will be of tremendous value in a warmer world
characterized by increased variability. We can develop optimal strategies that are resilient to such changes
across different climates. Moreover, an understanding of which regions to target for higher productivity can
show us the way to achieve global food-water-energy sustainability.

In this study, we present a unified Bayesian multilevel model for simultaneously understanding the secular
trends and interannual variations in global crop yields due to climate change, technological advancements,
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and large-scale and regional climate variability factors. Global carbon dioxide (CO2) levels are used as a
proxy to understand the influence of climate change on country-level crop yields. Historical per capita
gross domestic production (GDP) index is used to understand the impact of technology enhancements.
Furthermore, El Niño-southern oscillation (ENSO), the Palmer drought severity index (PDSI), and the 500 hPa
geopotential height anomalies (GPH) are used as surrogates to understand the interannual variations in the
country-level crop yields due to large-scale and regional climate factors respectively. Applications for food,
water, and energy management could be developed using this predictive model as part of the adaptation
to a changing climate. A critical aspect of developing such statistical models is the ability to accurately rep-
resent the parameter uncertainties. The multilevel Bayesian method we used here provides the opportunity
to explicitly quantify the parameter uncertainty using appropriate conditional and prior distributions, and
allows for their reduction through pooling of information across countries (Gelman, 2006a).

In Section 2, we present a brief description of the prior studies in this area. In Section 3, we provide the
details of the data and processing methods for country-level crop yields and the explanatory variables. We
introduce the multilevel Bayesian model for global crop yield estimation in Section 4. The results from the
model are discussed in Section 5. Finally, in Section 6, we present the summary and conclusions.

2. Background

Numerous prior researchers have attempted to relate weather, climate, and technological advancements
with crop yields both at the regional scale and at the global scales. Seminal works at the regional level
include Unganai and Kogan (1998), Cane et al. (1994), Kassie et al. (2010), Cantelaube et al. (2004), and
Sakurai et al. (2014). Unganai and Kogan (1998) used remotely sensed data for drought monitoring and
climate impact assessment in order to corn yield prediction in southern Africa. Cane et al. (1994) found
that ENSO index can explain up to 60% of the variability in Maize yield for Zimbabwe, and with a lead
time of up to a year, can provide accurate predictions of the yield. Cantelaube et al. (2004) found strong
teleconnections between the first four principal components of the GPH and wheat yield anomalies in
Europe. Recently, Sakurai et al. (2014) quantified the impact of the CO2 fertilization on soybean yields
in parts of the United States, Brazil, and China using a Markov Chain Monte Carlo (MCMC) parameter
estimation approach. Finally, Kassie et al. (2010) investigated the impact of technological advancement
(adoption of improved seeds) on crop yields and incomes in Uganda using propensity matching score on
a 927 household cross-sectional database.

At the global scale, we classified the prior studies into those that investigated the impact of climate change
(using Intergovernmental Panel on Climate Change [IPCC] model projections) on future crop yields and
those that identified historical yield trends and their relationships with key climate variables. Parry et al.
(2005), for instance, have evaluated the implications of climate change on food production using the busi-
ness as usual climate scenario, stabilization scenarios and the special report on emission scenarios. They
found that Africa is most at risk, and that stabilization 550 ppm would avoid most of the climate risk on
food production. Rosenzweig et al. (2014), through their study using gridded crop models have examined
how crops respond to climate in different latitudes and time periods and changes in atmospheric CO2.
They found strong negative effects of climate change at higher levels of warming scenarios. Fischer et al.
(2005) developed an integrated ecological-economic modeling framework and used it to demonstrate that
enhanced CO2 levels in conjunction with increased temperatures and extreme events might depress global
crop yields and increase production risk. A comprehensive review of the impacts of climate change on food
security can be found in Schmidhuber and Tubiello (2007). In their meta-analysis, they show that the number
of people at risk by 2080 ranges from 5 million to 170 million and that it strongly depends on the socioeco-
nomic development conditions.

Other sets of studies include historical trend analyses at the global scale with or without using essential
climate variables. Calderini and Slafer (1998) analyzed trends in the yield and yield stability of wheat during
the 20th century for 21 countries using linear and nonlinear regression models. They found that most of the
21 countries did not show any trend in the first three to five decades and a significant increase in yields in
the recent times. Ray et al. (2012) reported the trends in crop yields for maize, rice, wheat and soybeans from
1961 to 2008. They also showed that the returns have stagnated across 24%–39% of the growing regions
and hence argued for new investments in underperforming areas. Both these studies mainly focused on
detecting the trends in crop yields but did not evaluate the explanatory factors that lead to them. Lobell and
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Field (2007) have shown that the impacts of rising temperatures on crop yields (wheat, maize, and barley) are
small relative to the gains from technological advances, thereby showing the coupled nature of climate and
technology in impacting global yields. Relating trends to the explanatory factors was attempted by Lobell
et al. (2011) who primarily focused on understanding the changes of maize, wheat, rice, and soybean yields
after 1980 as it relates to the recent changes in precipitation and temperature. Iizumi et al. (2014) presented
the spatial distribution of the impacts of ENSO on the yields of wheat, maize, soybean, and rice. They noted
that the overall effects of ENSO on these crops were uncertain and can be both positive and negative. Using
a high-resolution crop yield dataset from 1979 to 2008, Ray et al. (2015) classified how yield variability of
wheat, maize, rice, and soybean were related to either normal or extreme fluctuation in temperature and
precipitation variability.

Thus, in our survey, we found that the crop yield studies were vast and disparate focusing on a specific region
or the impact of a particular climate variable or technology. To our knowledge, there has not been a com-
prehensive global analysis of the changes in the crop yields and how they relate to different large-scale and
regional climate variables, climate change variables and technology in a unified sense that also provides
robust model parameter uncertainties. Hence, in contrast to all these studies, in this article, we explore how
large-scale climate (ENSO), regional climate (PDSI and 500 hPa GPH anomalies), global CO2 levels, and tech-
nology enhancements (GDP) are related to the country-level crop yields. Instead of considering just the
staple crops, for each country we aggregated the annual crop yield of all the crops based on the associated
harvested area (from now on we call it total crops) to account for all the crops according to their impor-
tance. We formalized them into a unified predictive model in a multilevel Bayesian framework which allows
for formal uncertainty reduction and modeling.

3. Data and Preprocessing

In this section, we explain the preprocessing and the importance of the observed country-level crop yield,
climate, and the nonclimatic variables.

3.1. Observed Crop Yield

Annual crop yield data from 1961 to 2013 and the associated area harvested for 160 countries is collected
from the Food and Agriculture Organization of the United Nations statistical databases available at http://
www.fao.org/faostat/en/#data. This data is available for most countries after 1961 with the primary excep-
tion of the countries that formed after the dissolution of the Soviet Union and Yugoslavia. For instance, crop
yield data of Russia is limited to the years after 1992. Among the 160 countries, 133 countries have complete
data, and 23 countries have at least 21 years of data. For each country, we compute the harvested area
weighted average yield to ensure that the yield for a country is representative of the major crops harvested
each year while still accounting for the minor crops.

Yit =
∑Nc

k=1 yitkaitk∑Nc
k=1 aitk

(1)

where t is the year (1961–2013), i is the country, k is the crop, Nc is the total number of crops harvested in
year t, in country i. yitk is the reported yield for a crop k in year t in country i, and aitk is the corresponding
harvested area.

3.2. El Niño-southern oscillation

ENSO is an interannual climate mode associated with anomalous sea surface temperature conditions in the
central and eastern equatorial Pacific Ocean with warming and cooling phases. ENSO has a strong influence
on the interannual variability of global precipitation and temperature (Ropelewski & Halpert, 1987), induces
extreme events like droughts (Rajagopalan et al., 2000), and floods (Ward et al., 2014) and has effects on the
crop production (Porter & Semenov, 2005). Here, we used the annual average NINO3.4 ENSO index obtained
from Royal Netherlands Meteorological Insititute’s Climate Explorer available at http://climexp.knmi.nl as an
explanatory variable.

3.3. Palmer drought severity index

Droughts with varying duration, intensity, and frequency have always been a threat to food security. It is
the most common cause of severe food shortages around the world, specifically in developing countries
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(Dubois, 2011). Li et al. (2009) have shown that yield decrease due to droughts for major crops (wheat, maize,
and rice) will rise dramatically with future climate change. Consequently, pursuing the impact of this factor
on yields is of particular importance. In contrast with the past studies which examined the effect of pre-
cipitation and temperature (Lobell et al., 2011; Osborne & Wheeler, 2013; Ray et al., 2015), here we evaluate
the impact of historical droughts on crop yields using PDSI. This index not only integrates precipitation and
temperature, but is also highly correlated with soil moisture content (Dai et al., 2004), an important factor
impacting both rainfed and irrigated crop yields (Holzman et al., 2014). PDSI has been successfully applied
to quantify the severity of droughts across different climates (Wells et al., 2004). It ranges from about −10
(dry) to +10 (wet) with values below −3 representing severe to extreme drought (Dai et al., 2004). Grid-
ded monthly self-calibrated PDSI, at 2.5∘ resolution, provided by the NOAA/OAR/ESRL PSD (http://www
.esrl.noaa.gov/psd/), Boulder, Colorado, USA, is used here.

3.4. Geopotential height anomalies

GPH approximates the height of the pressure surface above mean sea-level in the upper atmosphere levels.
Fluctuations in GPH drive the atmospheric circulation patterns that in turn impact surface temperature or
precipitation variability (Knapp & Yin, 1996; Nazemosadat & Cordery, 1997; Xoplaki et al., 2000) and con-
sequently the crop yields. Cantelaube et al. (2004) found strong teleconnections between regional GPH
and wheat yield anomalies in Spain that were different from the relationships they found between yield
anomalies and temperature and precipitation. Lack of any studies on the global impact of GPH on crop
yields prompted us to pursue the influence of this large scale climatic pattern. Detrended anomalies of the
mean monthly GPH at 500 hPa are used here. This GPH level is the most important variable describing large
scale air flow (Weare, 1990). Gridded monthly GPH, at 2.5∘ resolution, was acquired from the same source
as PDSI.

3.5. Technology Enhancement and CO2 Enrichment, Two Crop Yield Growth Drivers

Factors like technology and economic advances, improvements in seeds, fertilizer application, using new
crop varieties, better management, agricultural practices and atmospheric CO2 enrichment can lead to
increases in crop yields over time. Among these, technology improvement is considered as one of the
most important factors (Lobell & Gourdji, 2012). In this study, we assume that a combination of technology
enhancement and atmospheric CO2 enrichment drives crop yield increase over time. However, technology
advances are sporadic and may create some degree of uncertainty regarding their impacts (Kruse, 1999).
Funds are indeed necessary to meet agricultural growth and government’s decisions to boost crop yields
are highly influenced by financial instrument availability. In the absence of these instruments, farmers and
related agencies may not utilize more advanced technologies or implement practices to enhance agricul-
tural efficiency. GDP per capita is the best measure of a countries’ economic development (Hibbs & Olsson,
2004). There are no complete time series for the years between 1961 and 2013 for the 160 countries. Hence,
we used imputed per capita GDP time series (expressed in the 2005 U.S. dollars) developed by the World
Bank (James et al., 2012). We assume per capita GDP involves all the industrial and nonindustrial agricul-
tural improvement measures for example, fertilizers, agricultural machinery, management practices, remote
sensing, and so on.

During the last decades, atmospheric concentrations of CO2 have increased substantially. Crops generally
respond positively to increased atmospheric CO2 concentration (McGrath & Lobell, 2013). The positive effect
of increasing CO2 concentration on photosynthetic rates, photorespiration, and water use efficiency is com-
prehensively discussed (Attavanich & McCarl, 2011; Bannayan et al., 2014; Long et al., 2006). Moreover, while
there is an agreement among studies that increasing CO2 will positively impact crop production and yield
(Bannayan et al., 2014; Jaggard et al., 2010; Lobell & Gourdji, 2012; Rosenzweig & Parry, 1994), precise esti-
mates of the future fertilization effect of CO2 enrichment on crop yields is a controversial topic (McGrath &
Lobell, 2011; McGrath & Lobell, 2013). The impact of CO2 on crops is of such great importance that a large
portion of studies assessing wheat production affected by climate change have mainly investigated the
impacts of future CO2 concentrations (Kang et al., 2009). Due to the small variation of CO2 concentration,
separation of CO2 fertilization effects from the others is very challenging (Sakurai et al., 2014). McGrath and
Lobell (2013) have noted that previous studies have made simplifying assumptions about the fertilization
effect of CO2 on crop yields. Some studies utilized free air CO2 enrichment (FACE) experiments (Ainsworth
& Long, 2005) to make a better assessment of the physiological response of crop yields to CO2 (Tebaldi &
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Lobell, 2008). Most of these studies have explored the likely future impacts of CO2 increase on crops based
on different CO2 enrichment scenarios.Understanding the past impact of enhanced CO2 on crop yields is
also crucial (Challinor & Wheeler, 2008). Here we use CO2 concentration at Mauna Loa (Hawaii). Some char-
acteristics at MLO such as undisturbed air, remote location, and very little impact of human activity and
vegetation has made it an ideal place for monitoring atmospheric CO2 changes. The monthly mean of the
data was acquired from https://www.esrl.noaa.gov/gmd/ccgg/trends/ and converted to the annual mean.

3.6. Mean Diurnal Temperature Range (DTR)

The DTR is the difference between the daily maximum and minimum temperature. WorldClim Global Cli-
mate Data provides the average of the DTR for the past, current and future conditions (Hijmans et al., 2005).
Here the current condition, that is the average of DTR from 1960 to 1990 with 1 km resolution is used. This
data is geospatially averaged for each country using ArcMap and used as a country level predictor for the
parameters in the Bayesian model.

3.7. Precipitation Variability

The annual average of precipitation at the country level was obtained from the World Bank website at
https://datahelpdesk.worldbank.org/knowledgebase/articles/902061-climate-data-api. We computed the
coefficient of variation (CV) of precipitation using data from 1961 to 2012. CV describes the extent of vari-
ability (standard deviation) relative to the mean.

3.8. Aridity Index

Aridity index, defined as the ratio of the mean annual precipitation and mean annual potential evapotran-
spiration is also used as a regional predictor. The global average of aridity index from 1950 to 2000 at 1 km
spatial resolution used in this study was obtained from http://www.cgiar-csi.org (Zomer et al., 2008). Using
this dataset, we computed the spatial average of the aridity index for each country.

3.9. Irrigated Fraction of Croplands

The expansion of irrigation facilities is a key strategy to buffer climate variability and increase food security.
Given that several countries have significant surface water irrigation and storage facilities, it is important to
consider it while modeling crop yields. To account for the role of the irrigation in the model, we implement
the fraction of the cropland in each country that is equipped for irrigation as an important country-level pre-
dictor that constrains the response parameters. The area equipped for irrigation is the area of the land with
infrastructure to provide water for the crops. It includes areas equipped for full control irrigation, equipped
lowland areas, and areas equipped for spate irrigation (Portmann et al., 2010).

3.10. Spatial Cropland Coverage and Data Superposition

The PDSI and GPH data that are used in this study cover global land areas and the whole globe, respec-
tively. However, for each country, the PDSI and GPH were averaged on croplands. Annual time series of
spatial cropland coverage was used for this purpose (Ramankutty & Foley, 1999). Here, two croplands cov-
erage data, C3 and C4, at 0.5∘ grid spatial resolution were aggregated. The C3 pathway, also known as the
photosynthetic carbon reduction cycle, is the photosynthetic pathway most often used by plants. A com-
plex adaptation of the C3 pathway is the C4 pathway, which overcomes the restriction of photorespiration
(Furbank & Taylor, 1995). C4 plants such as maize and sorghum possess a higher photosynthesis efficiency
than those of C3 plants such as rice and wheat. C3 photosynthesis only uses the Calvin cycle and takes place
inside of the chloroplast in mesophyll cells. Photosynthetic activities in C4 plants are partitioned between
mesophyll and bundle sheath cells (Wang et al., 2012).

All the variables are aggregated to the annual time series. The PDSI and GPH grids at the 2.5∘ resolution
are superimposed on to the cropland grids at the 0.5∘ resolution and clipped along the cropland reference.
This procedure allows us to spatially aggregate PDSI and GPH over the cropland and disregard the regions
without crops. There are some small islands and territories which have historical crop data, but information
about their spatial coverage of croplands are unavailable. Consequently, the final results do not contain all
the global countries. The cropland coverage data is available up to 2007, assuming after 2007 the crop-
land coverage has not changed, results covers the time span of 1961–2013 over 160 countries. Spatial crop
coverage from 2007 is shown in Figure 1 where white color refers to regions without croplands.
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Figure 1. Spatial coverage of croplands (C3 and C4) in 2007.

4. Methodology

Crop growth modeling is very complex and requires extensive information that is usually incomplete and
sometimes unavailable (Walker, 1989). Because of this, mathematical modeling and statistical modeling
have become popular as an alternative method for many crop studies (Cai et al., 2011). A general multi-
level modeling framework that allows structuring of information within and across countries was explored
here using a hierarchical Bayesian model. Our goal is to estimate the distribution of crop yields in each of
the 160 countries across the globe. The time series (1961–2013) of the average crop yields in each coun-
try is informed by climate covariates (ENSO, PDSI, and GPH), anthropogenic influence (global CO2 con-
centration) and technology improvements (historical per capita GDP). In addition, we have climatological
attributes that include aridity index, mean DTR, precipitation variability and country-level irrigation frac-
tion as country-level predictors for ENSO and CO2 influence coefficients. A particular climate predictor may
inform the crop yield at each of the countries. However, the response across the countries may vary system-
atically due to local conditions. The multilevel model can be used for structuring this information (within
and across countries), by considering multiple levels of modeling. The individual regression coefficients
for each country on each climate predictor are estimated at the first level. The second level informs these
regression coefficients across countries using local features - the aridity index, mean DTR, variability of pre-
cipitation and irrigation fraction. This procedure allows us to simultaneously parameterize the variations in
the response of yield to climate predictors across countries.

The crop yield Y are assumed to come from a distribution (process model) with a probability density func-
tion f (Y|𝜽), where 𝜽 is the parameter vector. In the current application, we consider that log(Y) is normally
distributed. This assumption was checked using Kolmogorov-Smirnov test on the log-transformed data.
The first level of the model considers that in each country i, log(Yit) is described by a Normal distribution
with time varying mean 𝜇it that is informed by a regression on the five chosen covariates with intercepts 𝛼i

and a (5× 160) regression coefficient matrix 𝜷 . The second level of the model considers that the regression
coefficients for ENSO and CO2 can be estimated using country level predictors. This structure allows param-
eterizing the response to a particular climate covariate across countries that may have a diverse range or
scale of values. The errors from the regression model are considered to be independent and identical with
a 0 mean and a variance that is estimated as part of the model.

log
(

Yit

)
∼ N

(
𝜇it, 𝜎

2
i

)
(2)

𝜇it = 𝛼i + 𝛽 i
1

(
GDPit

)
+ 𝛽 i

2 log
(

CO2

)
t
+ 𝛽 i

3ENSOt + 𝛽 i
4PDSIit + 𝛽 i

5GPHit (3)

NAJAFI ET AL. 415



Earth’s Future 10.1002/2017EF000690

𝛽 i
2 ∼ N

(
a1 + b11CVi + b12DTRi + b13𝛾i + b14IFi, 𝜎

2
𝛽2

)
(4)

𝛽 i
3 ∼ N

(
a2 + b21CVi + b22DTRi + b23𝛾i + b24IFi, 𝜎

2
𝛽3

)
(5)

where Yit is the average yield in year t in country i, CVi , DTRi , 𝛾 i , and IFi are the coefficient of variability of
annual rainfall, average DTR, the aridity index and the fraction of croplands under irrigation of the country
i. Since the effect of the ENSO and CO2 are at the larger spatial scales impacting many countries, the second
level helps pool this information by constraining the response parameter using the regional characteristics
(Armal et al., 2018; Renard et al., 2013). The errors with variance 𝜎2

𝛽2
, and 𝜎2

𝛽3
represent variation in the ENSO

and CO2 coefficients between countries beyond what is explained by the aridity index, DTR, variability of
precipitation and irrigation fraction.

The joint posterior distribution p(𝜽|data), of the complete parameter vector is derived by combin-
ing the prior distributions and the likelihood functions. We assumed a uniform prior distribution for
the variance terms and uninformative normal priors for the coefficients of the second level (Gelman,
2006b). The parameters are estimated using JAGS (Denwood, 2016; Plummer, 2012). JAGS (Just Another
Gibbs Sampler) is a program for the analysis of Bayesian models which employs the Gibbs sampler, a
MCMC method for simulating the posterior probability distribution of the parameters conditional on
the current choice of parameters and the data. Four parallel chains are simulated using random initial
values for the parameters. Each chain was run for 15,000 iterations with 70% burn-in to discard the
initial estimations. As Gelman and Rubin (1992) recommended, we monitor the convergence using a
shrink factor. The ratio of variance between the chains and variance within the chains should be lower
than 1.1.

5. Results and Analysis

5.1. Model Verification

Initially, we evaluated the fit of the Bayesian multilevel model using posterior predictive checks (Rubin,
1984). The accuracy of the predictions is measured using the Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002). The DIC is based on the posterior distribution of the deviance statistic
D(𝜃)=−2 log f (y|𝜃)+ 2pD, where f (y|𝜃) is known as the “likelihood function,” which is mathematically
the conditional density function of the predictand y given the parameters in vector 𝜃, and pD is the
effective number of parameters.

In Figure 2a, we present the variance explained (adjusted R2) from the model for each of the 160
countries. We can see from the figure that the amount of variance explained is greater than 60% in
most of the countries. A few exceptions (with lower than 25% adjusted R2) include the former Soviet
nations Slovakia, Luxembourg, Lithuania, Czech Republic, Estonia, and Eritrea among others. The
countries in Africa and South America that have low adjusted R2 have had periodic civil unrests and
geopolitical conflicts. Therefore, the data on yields and GDP may not be indicative of the trend and
variability.

Since much of the variance explained is a result of the monotonic trend in the yield explained by the mono-
tonic trend in the CO2 and GDP, we also present, in Figure 2b, the adjusted R2 from the model after correcting
for this trend. We remove the trend causing terms (𝛼i + 𝛽 i

1GDPit + 𝛽 i
2CO2t) from both observed and model

predicted yields, and then compute the adjusted R2 of the residuals. This detrended version will reflect the
amount of variance in the observed yield data that is explained by the remaining terms, ENSO, PDSI, and
GPH. We can see that while in most of the countries we can explain up to 20% of the residual variance using
the climate covariates, in some countries like Australia, Argentina, Bolivia, Peru, Myanmar, the Russian Fed-
eration, South Africa, and Spain, we can explain up to 40% of the residual variance. In a few countries (not
very visible on the map due to scale) such as Armenia, Moldova, Croatia, Serbia, and Montenegro, we see
adjusted R2 from 47% to 78%. List of the countries that have atleast 30% residual adjusted R2 are presented
in Table 1. Together, we can see that based on the choice of the explanatory variables that include both
monotonic change and natural variability, we were able to explain much of the variations in the global crop
yields.
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Figure 2. Adjusted R2 from the model based on (a) all predictors and (b) predictors after removing CO2 and GDP per capita.

5.2. Inference Based on the Regression Coefficients

The median of the posterior probability distribution of the regression coefficients for GDP (𝛽 i
1) and CO2

(𝛽 i
2) for the 160 countries are shown in Figure 3. Countries where p(𝛽 > 0)> 0.9 or p(𝛽 > 0)< 0.1 are shown

in thick blue border. These are the countries that have strong positive or negative relationship with the
explanatory variable (GDP in Figure 3a and CO2 in Figure 3b). The value of the green colors indicates the
strength of the positive relationships, that is, the sensitivity expressed as change in the yield (log scale) per
unit change in GDP or CO2 (log scale). Similarly, orange and red colors indicate the strength of the negative
relationships. Out of the 160 countries, 101 (20) countries show a statistically significant positive (negative)
relationship with GDP. Similarly, 93 (23) countries show a statistically significant positive (negative) relation-
ship with CO2. These results also corroborate what we find in Figure 2a where much of the variance can be
explained using the monotonic trend coefficients 𝛽 i

1 and 𝛽 i
2. Among the 160 countries, 54 countries have a

significant positive relationship with both GDP and CO2. The United States, Denmark, Germany, Spain, Mex-
ico, Portugal, and Philippines are among these. Furthermore, given their high correlation, we expect some
GDP (𝛽 i

1) and CO2 (𝛽 i
2) coefficients to be negatively correlated, that is, the resulting regression coefficients

for each of them may not be unique. We see this, for example, in Brazil, India, China, Uruguay, Sudan, and
some European nations.

Among the second level model coefficients for 𝛽 i
2, that is, the response coefficient for CO2 (equation 4), we

find that b11, b12, and b14 are statistically significant. This indicates that the CO2 regression coefficients can be
related to country-level CV, DTR, and the irrigation fraction IF. In Figure 4, we present the pairwise relations
of the CO2 median regression coefficients that are statistically significant (countries with blue boundaries)
with the country-level predictors. The size of the circle indicates the GDP per capita of the country in 2013;
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Table 1.
List of the Countries That Have Atleast 30% Residual Adjusted R2 After Removing CO2 and GDP Per Capita

Adjusted R2 considering the whole variables Adjusted R2 after detrending

Montenegro 0.81 0.79

Serbia 0.63 0.65

Croatia 0.62 0.52

Moldova 0.66 0.50

Armenia 0.89 0.48

Macedonia 0.89 0.44

Sierra Leone 0.69 0.42

Russia 0.82 0.39

Syria 0.81 0.38

Morocco 0.79 0.37

Argentina 0.86 0.37

Georgia 0.29 0.37

Bosnia and Herzegovina 0.37 0.36

Spain 0.94 0.35

Azerbaijan 0.75 0.34

Bolivia 0.35 0.34

Cameroon 0.96 0.31

larger circles indicate countries with a high GDP. Based on the posterior distribution of b11, we find there is
a general negative trend, pointing out that the countries with larger CV of precipitation have a lower CO2

response and vice versa. From Figure 4a, we can see that countries with high GDP (larger circles) have a
smaller CO2 response regardless of their CV of precipitation. Countries with low GDP (smaller circles) have
greater CO2 response factors, again across the spectrum of CV. An interesting observation one can uncover
from this phenomena is that the response of CO2, that is, the impact of CO2 on crop yields is greater for
low GDP countries. High GDP countries typically have greater yields due to better agricultural practices
and infrastructure including the access to irrigation, better seeds, and fertilizers. Hence, the impact of CO2

enhancement is seldom seen. To the contrary, low GDP countries, have had lower yields historically due to
their poor access to technology; increases in the CO2 levels have contributed to a sustained upward trend
in yields over time.

Figure 4b, the pairwise relationship between DTR and the median of the CO2 regression coefficient, also
reveals some interesting trends. There is a positive relationship between DTR and the CO2 response coeffi-
cient. The higher the DTR, the greater the CO2 response. DTR is an indicator of the energy available for crop
growth through the day. We find that the countries with higher DTR better respond to CO2 enhancement in
the atmosphere especially for the low GDP countries. Rosenzweig and Tubiello (1996), in their model studies
on wheat, have seen that the negative effects of temperature are reduced when the minimum temperature
increases more than the maximum temperature. They also showed that under current CO2 concentrations,
the yields responded negatively to temperature changes, however, the response was both positive and neg-
ative (depending on the region) under elevated CO2 levels. Herein, we reiterate that we are only showing
that countries with greater DTR on average respond positively to CO2 enhancements. b13, the second level
coefficient that relates the CO2 response parameter 𝛽 i

2 with the aridity index of the country is not statistically
significant. This can be seen from Figure 4c. Finally, in Figure 4d, we present the relationship between the
country-level irrigation fraction with the CO2 coefficient 𝛽 i

2. There is a general positive trend, that is, coun-
tries with greater irrigation capacity have a much larger positive CO2 coefficient, indicating that the positive
impact of CO2 enhancement on the crop yields is greater for countries with greater irrigation facilities. The
combined effect of enhanced atmosperic CO2 and improved irrigation that buffers climate variability is a
net positive on the countries’ aggregate crop yields. For readers reference, we provide the maps for the
country-level CV, DTR, aridity index, irrigation fraction and per capita GDP of 2013 in Figure 5.
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Figure 3. The median of the posterior probability distribution of the regression coefficients for (a) GDP per capita and (b) CO2.

The median of the posterior probability distribution of the regression coefficients for PDSI (𝛽 i
4), GPH (𝛽 i

5), and
ENSO (𝛽 i

3) for the 160 countries are shown in Figure 6. As in Figure 3, the countries where p(𝛽 > 0)> 0.9 or
p(𝛽 > 0)< 0.1 are shown in thick blue border and these countries have strong positive or negative relation-
ship with the predictor (PDSI in Figure 6a, GPH in Figure 6b and ENSO in Figure 6c). Out of the 160 countries,
43 (17) countries show a statistically significant positive (negative) relationship with PDSI. 40 (25) countries
show a statistically significant positive (negative) relationship with GPH. A total of 3 out of the 160 countries
show a statistically significant positive relationship with ENSO. Much of the natural variability signal could
be captured using the PDSI and GPH co-variates, thereby rendering ENSO’s influence insignificant.

The United States, Canada, several countries in South America, Eastern European countries, Australia, Mid-
dle East, and Southeast Asian countries are the ones that have significant PDSI coefficient. Furthermore, we
find that Serbia, Croatia, Moldova, Macedonia, and Sierra Leone are among the countries that have a sta-
tistically significance PDSI coefficient along with having residual adjusted R2 greater than 40%. We find a
significant GPH association in the southeast Asian countries, especially around the equator, Eastern Europe,
Russia, and the southern and sub-Saharan African countries. The historical crop yields of Croatia, Moldova,
and Sierra Leone have a statistically significant connection with PDSI and GPH and their multilevel linear
model fit exhibited high residual adjusted R2. The historical yields of Montenegro and Armenia also showed
a significant connection with GPH and have high residual adjusted R2 in the model, but did not correlate
well with PDSI.

In Figure 7, we present the relationship between PDSI (Figure 7a) and GPH (Figure 7b) median regression
coefficients and the aridity index of the associated countries. As in Figure 4, the size of the circle indicates
the GDP per capita of 2013 of the country. Larger circles represent countries with higher GDP. Only countries
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Figure 4. (a) Relationship of median regression coefficients of CO2 for statistically significant countries versus associated precipitation
variability. Size of the circles demonstrates the GDP per capita of the countries; A locally weighted scatterplot smoothing (LOWESS) is
used to show the negative relationship between CO2 coefficients and precipitation variability (the gray line); (b) median regression
coefficients of CO2 for statistically significant countries versus associated diurnal temperature range (DTR). A positive relationship
between CO2 coefficients and DTR is seen; (c) median regression coefficients of CO2 for statistically significant countries versus
associated aridity; not a strong relationship between CO2 coefficients and DTR was found; (d) median regression coefficients of CO2 for
statistically significant countries versus associated DTR. A positive relationship between CO2 coefficients and IF is seen.

that have a statistically significant PDSI or GPH coefficient (countries with blue boundaries) are shown. From
Figure 7a, we can see that there is a negative trend; countries with larger aridity index (wetter countries on
average) have a negative PDSI response and countries with smaller aridity index (dryer countries) have a
positive PDSI response. The aridity index map (Figure 5c) indicates that the wet countries are dominant
in southeast Asia, western Europe, and South America. These countries exhibit a negative PDSI response
indicating that high annual PDSI leads to lower yields. A high PDSI in wet countries is indicative of more
than average rainfall years; because high PDSI values may imply floods (Li et al., 2009), this could lead to crop
damage. Wittrock et al. (2011) have reported this phenomenon for Canada recently. On the contrary, the dry
countries have a positive PDSI response, indicating that high PDSI (more rainfall) leads to an enhanced crop
yield. Unlike CO2, which is a long-term effect, the influence of GDP is not apparent in PDSI. A similar pattern
was observed for GPH.

5.3. Out-Of-Sample Predictive Performance

Validation of the model for an out-of-sample block can reveal the true performance of the multilevel
Bayesian model. It can also serve as a test for using the model based on future climate, CO2 and GDP
per capita projections. We evaluate the model using the split sampling technique. The first 40 years
(1961–2000) are used to develop the Bayesian model which is in turn used to predict the yields for the
left out 13 years (2001–2013). We evaluated the model performance using average ignorance score (IG),
otherwise known as the log-likelihood score. IG is a useful measure for evaluating probabilistic forecasts
since it generalizes the categorical forecasts beyond the binary case (Roulston & Smith, 2002) and is
sensitive to both the mean and variance of the predicted distribution. We computed the average IG for
each country for the out-of-sample predictions using the easyVerification package available in the open
source software R (https://cran.r-project.org/web/packages/easy Verification/easyVerification.pdf). We use
tercile categories for evaluating the IG. The out of sample predictions are considered to be useful if IG of
predictions is lesser than the IG of climatology. For the tercile categories, the average IG of climatology is
1.585 (log 2(3), 3 being the number of categories).

NAJAFI ET AL. 420

https://cran.r-project.org/web/packages/easy%20Verification/easyVerification.pdfhttps:/cran.r-project.org/web/packages/easy
https://cran.r-project.org/web/packages/easy%20Verification/easyVerification.pdfhttps:/cran.r-project.org/web/packages/easy


Earth’s Future 10.1002/2017EF000690

Figure 5. (a) Global map of precipitation variability from 1961 to 2012, (b) global map of mean diurnal temperature range from 1960 to 1990, (c) global map of mean aridity spanning
1950–2000, (d) global map of fraction of cropland areas equipped for irrigation, (e) GDP per capita in 2013.

In Figure 8a, we present the average IG for the 133 countries (with complete data records) used for out of
sample predictions. We also present the time series of the observed yields and distribution of the predicted
yield for four countries, the United States, Indonesia, Afghanistan, and Fiji in Figures 8b–8e. Training period
(validation) observations are shown using the red (green) line. A total of 85 countries of the 133 countries
used for this demonstration have an average IG less than the climatological IG. These include the United
States, China, Southeast Asian countries, Brazil, and southern African countries among others. Venezuela,
Uruguay, Namibia, and Colombia are among the countries with high average IG. The time series plots shown
as an example reveal that the interquartile range of the predicted yields captures the observations most
times. The general trend, increasing in the case of the United States and Indonesia; decreasing in the case
of Fiji, and jump change in the case of Afghanistan, is also captured well. Given its ability to capture the
trends in crop yields, this model can serve as a handy supplement to the crop physiology-based models that
attempt to predict future yields under prescribed “business as usual” mode for changes in the values of the
predictors. However, predicting future yields may be associated with a larger uncertainty due to potential
extrapolation of the fitted data.
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Figure 6. The median of the posterior probability distribution of the regression coefficients for (a) PDSI, (b) GPH, and (c) ENSO.

6. Discussion and Summary

There are currently over 7.3 billion people in the world, with an expected population of over 8.5 billion
by 2030 and 9.7 billion in 2050. Increased demand for food due to population, income growth, changes
in global food consumption patterns and increasing demand for bioenergy will raise pressure for increased
and more sustainable agricultural production. It is projected that food production has to double in the com-
ing decades to keep up with increasing demand (Tilman et al., 2011). During the recent decades, along with
the fast changes in human life, the agricultural sector has improved tremendously. Changes in the agricul-
tural sector will continue to happen in the future. Hence, we should expand our knowledge regarding the
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Figure 7. (a) Relationship between PDSI coefficients and the aridity index for statistically significant countries. (b) Relationship between
GPH coefficients and the aridity index for statistically significant countries; in both scatter plots, the size of the circles demonstrate the
GDP per capita of the countries. A locally weighted scatterplot smoothing (LOWESS) is used to show the trend.

Figure 8. (a) Ignorance score of 133 countries with complete data from 1961 to 2013; and cross validation through removing
observation data from 1961 to 2000 for (b) United States; (c) Indonesia; (d) Afghanistan, and (e) Fiji.

drivers of these changes to be able to propose more effective strategies for food security. Moreover, during
the last two decades, global croplands remained fairly stable (http://data.worldbank.org/indicator). It may
be implied that in many countries, the land area used for agriculture has reached its maximum limits, so any
possibility for increased food production needs to consider increase of agricultural yields. There is a clear
and urgent need to unravel the factors that affect crop yields more than the past. Understanding the change
in crop yields is also important for policy makers in designing the farm programs, disaster relief legislation,
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research investments and climate-related adaptation/mitigations measures. It can provide a guideline for
future agricultural research planning and it can be used to evaluate the returns on agricultural research.
Accordingly, we attempted to develop an inference/predictive model that enables a good understanding
of the changes in crop yields along with providing the ability to predict the yields given current or future
conditions. It captures the past impacts of climate variables and technology on crop yields and can be used
to evaluate future climate- related yield variability and address alternate factors contributing to the spatial
heterogeneity in climate-yield response.

In this article, we explored the connection between crop yields, technology improvement and several global
and regional scale climatic indicators at the country scale from 1961 to 2013. Most of the similar global
studies that addressed the effect of climate on crops, focused on precipitation and temperature, while con-
sidering a few staple crops such as wheat, maize, and rice. In this study, we considered the weighted average
of all the crop yields, emphasizing on the most important crops in each country based on the associated
harvested area. We used partial pooling through hierarchical Bayesian modeling to reduce uncertainties
associated with coefficient estimation of the variables for ENSO and atmospheric CO2 enrichment. Mono-
tonic trend of crop yields for most of the countries were explained by the monotonic trend in the CO2 and
GDP per capita variables. Although, irrigation substantially decreases the impact of climate variables, the
model found significant connections between yields fluctuation and climate for many countries. Climate
predictors explained 20% to more than 70% of the residual variance for most of the countries. While a neg-
ative relationship between crop yields and PDSI existed in a few countries, the relationship was generally
positive. It was shown that across the spectrum of CV (low variation to high variation countries), countries
with high GDP per capita have a smaller CO2 response and vice versa. Furthermore, countries with higher
DTR better respond to atmospheric CO2 enrichment especially for the low GDP countries. We realized that
wetter countries have a negative PDSI response and countries with smaller aridity index have a positive PDSI
response. Countries with better irrigation facilities have a much positive influence of CO2.The model per-
forms well under out-of-sample verification. The main limitation of our study is its inability to capture crop
yields’ responses to variables at subnational levels. However, doing this would be difficult because of the
lack of high resolution crop data for most places except at field research sites. Furthermore, several coun-
tries which are based on irrigated agriculture do not properly account its groundwater usage. While we are
using the country-level irrigation fraction as a proxy, it has to be noted that it comes with certain level of
uncertainty. We also acknowledge that the model co-variates are selected based on known influences and
prior correlation analyses. Full causality and nonlinear interactions have not been tested here.

Consequence management of future climate-driven factors that adversely affect crop yields can be opti-
mized (Afshar & Najafi, 2014) and highlighted by understanding the relationships between crop yields and
climate patterns. This will enable us to evaluate alternative food policy strategies and taking precautionary
economic measures. Additionally, countries can cope with negative impacts of climate through some mea-
sures like fertilizer, changing crop type, and planting date (Tubiello et al., 2007). A comprehensive study is
indeed required to recognize the most vulnerable crops in each country. The results of such a study would
be helpful for countries that are dependent on agricultural imports. The degree of impact of CO2 enrich-
ment on the agriculture and crops has always been a controversial topic of debate. Expanding knowledge
in this sector as well as using more precise data with higher resolution like satellite based data of Orbiting
Carbon Observatory-2 mission (Frankenberg et al., 2014) can provide useful insights for this problem. There
is a strong agreement among many reports about the impact of climate change on crop yields and crop
productions in the future. Most of them unanimously agree that the future impact of climate change on
food security does not seem promising. However, most parts of the world likely will be able to continue to
feed itself in the coming decades (Parry et al., 2004). More research and investments in crop enhancement,
and climate change adaptation policies will help sustain crop yield growths in the future (Lobell & Gourdji,
2012).

In the era of climate change that is inducing more frequent weather extremes, crops are becoming more
vulnerable. Furthermore, geographical locations of food production are becoming more and more dis-
tant from geographical locations of food consumption in many cases (Fader et al., 2013) and other factors
like burgeoning population, political issues, and expensive energy shortages are undermining food secu-
rity around the world. Thus, understanding the current and past dynamics and connections across the
climate-water-energy nexus is essential, as the many countries try to manage the consequences of climatic
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and nonclimatic variables on crops. Our work tries to enhance the knowledge of global food security field,
which is of relevance to policy initiatives, decision makers, water and energy managers, government and
nongovernment organizations like U.S. Department of Agriculture (USDA) and Food and Agricultural Orga-
nization of United Nations (FAO), stakeholders and scientists with similar interests to ours. Our ongoing work
in this direction is focused on creating novel ideas of modeling and optimization techniques for ensuring
global food security.
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